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Abstract

We describe how we can �nd the singed area bounded by a parametric curve with respect to a
slanted line, y = mx+ b; in two dimensions. We extend this idea to the corresponding setting in
three dimensions. These are special cases of Green's Theorem and the Divergence Theorem, but
the ideas and methods introduced here are accessible to a wider audience.

1 Introduction
In a calculus textbook (see [1] or [2]), the Riemann integral

R b
a
f(x)dx for a continuous function f

over the interval [a; b] represents the net area of the region bounded by the curve y = f(x), two vertical
lines x = a and x = b (both perpendicular to the x-axis), and the x-axis. In this paper, we discuss
ways of �nding the area bounded by a parametric curve [x(t); y(t)], a slanted line y = mx+b, and the
perpendiculars to the line from (x(t1); y(t1)) to (x(t2); y(t2)) in two dimensions. Since we replace
the graph of a function y = f(x) with a parametric curve, the sign of the bounded area depends on the
direction of the given parametric curve. Throughout this paper, we will use the terminology of �nding
the net signed area (or simply area) bounded by a parametric curve [x(t); y(t)] with respect to a
slanted line y = mx+ b without causing any confusion. We generalize the idea from two dimensions
(2-D) to three dimensions (3-D) and use similar terminology throughout the paper.
In Section 1, we illustrate how technology has inspired us to conceive formulae in two dimensions.

In Section 2, we generate the 2-D formulae to corresponding ones in 3-D. In Section 3, we describe
a special method of �nding the volume bounded by a surface satisfying the form F (x; y; z) = 0 and
a general plane. We do not require readers to have knowledge of Green's Theorem or the Divergence
Theorem. However, we remind those readers who are familiar with Green's Theorem and the Diver-
gence Theorem that the results derived in this paper are consistent with those of Green's Theorem and
the Divergence Theorem.
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1.1 Motivation
We intend to �nd the area of one of the regions bounded by the curve C : x2 + y2 + 2:22x� 0:1y �
0:529 = 0 and the line

 !
EF : y = 0:9802x + 1:866, which is shown in Figure 1. We note that the

curve C and the line
 !
EF were drawn arbitrarily employing Dynamic Geometry software [ClassPad

Manager]. The line
 !
EF divides the circle into two portions, we select the smaller portion (see Figure

1) for demonstration. We select such C because if we were to apply traditional techniques using
either vertical or horizontal partitions (dx or dy respectively), we would need to divide the area into
two sub-areas since a vertical or horizontal line intersects C at two different intersections. However, if
we think of EF as our new x-axis and choose one line that is perpendicular to EF as our new y-axis,
then we avoid multiple partitions and can apply a numerical approximation technique to approximate
the Riemann integral for the enclosed region before analytically �nding the bounded area.

Figure 1. Motivation

We will use ClassPad (see [3]) to describe how we apply the Trapezoidal Rule to approximate the
area of the region.

� We note the distance of EF equals 2:444009. Subdivide EF into 19 panels: 2:444009=19 =
0:1286320526:

� Each subinterval is of length 0:1286320526.

� The length of HG is tabled below:

Table 1. The heights of HG:
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� We calculate the area of each trapezoidal region and table them below. Note that column A
represents the height HG and column B represents the area of each trapezoidal region. For

example the cell B1 =
(A1 + A2) � (0:1286320526)

2
is the area of the �rst trapezoid.

Table 2. Trapezoidal Sum

� We sum up the values in column B and save it in cell C1 = 1:4191, which is the approximation
of the bounded area.

� The video clip and eActivity using ClassPad (see [3]) describing this example can be found in
[5] and [6] respectively.

1.2 Theoretical Approach
A curvew (t) is smooth ifw0 (t) is continuous and never equal to the zero vector. We �rst integrate a
smooth curve C of the formw(t) = [x(t); y(t)], where t1 � t � t2, with respect to a line L : y = mx
through the origin. We remark that the curve C will travel from t = t1 to t = t2; this becomes
important when we interpret the area, which will have positive or negative value. For example, we
sketch the of the curve C (that is traveling from P to Q); and the line segment AB; which is y = mx;
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in Figure 2 below. We note that PA and QB are both perpendicular to the line segment AB:

A

B

P = ÝxÝt1Þ,yÝt1ÞÞ

Q = ÝxÝt2Þ,yÝt2ÞÞ

Figure 2. Area boundedby APQBA

Let B1 = fe1; e2g be the standard basis for R2, and B2 = fc1; c2g be another basis for R2, where
c1 = (cos �; sin �) is a unit direction vector of the line L and c2 = (� sin �; cos �) is a unit vector
perpendicular to c1 with � = tan�1m.

We �rst express
�
x(t)
y(t)

�
as a vector relative to the basis B2. In other words, we need to discover�

p(t)
q(t)

�
so that

�
x(t)
y(t)

�
= p(t)c1 + q(t)c2, or

�
x(t)
y(t)

�
= [c1 c2]

�
p(t)
q(t)

�
(1)

=

�
cos � � sin �
sin � cos �

� �
p(t)
q(t)

�
:

This implies that �
p(t)
q(t)

�
=

�
cos � � sin �
sin � cos �

��1 �
x(t)
y(t)

�
�
cos � sin �
� sin � cos �

� �
x(t)
y(t)

�
�
x(t) cos � + y(t) sin �
�x(t) sin � + y(t) cos �

�
: (2)

The integral of [x(t); y(t)] with respect to a line L : y = mx through the origin is
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A =

Z t2

t1

q(t)p0(t)dt (3)

=

Z t2

t1

(�x(t) sin � + y(t) cos �) (x0(t) cos � + y0(t) sin �) dt

= cos2 �

Z t2

t1

�
�x(t) sin �

cos �
+ y(t)

cos �

cos �

��
x0(t)

cos �

cos �
+ y0(t)

sin �

cos �

�
dt

=
1

1 + tan2 �

Z t2

t1

(�x(t) tan � + y(t)) (x0(t) + y0(t) tan �) dt

=
1

1 +m2

Z t2

t1

(�x(t)m+ y(t)) (x0(t) + y0(t)m) dt

Next, integrate a parametric curve w(t) = [x(t); y(t)], t1 � t � t2, with respect to a line L :
y = mx+ b (let � = tan�1m). By shifting the bounded region vertically by b, we can then apply the

same concept above to �nd the coordinate vector
�
p(t)
q(t)

�
of
�
x(t)� 0
y(t)� b

�
relative to B2 below.�

p(t)
q(t)

�
=

�
cos � sin �
� sin � cos �

� �
x(t)� 0
y(t)� b

�
(4)

=

�
x(t) cos � + (y(t)� b) sin �
�x(t) sin � + (y(t)� b) cos �

�
:

Therefore, the integral ofw(t) = [x(t); y(t)], t1 � t � t2, with respect to the line L : y = mx+ b
(let � = tan�1m) is

A =

Z t2

t1

q(t)p0(t)dt (5)

=

Z t2

t1

(�x(t) sin � + (y(t)� b) cos �) (x0(t) cos � + y0(t) sin �) dt

= cos2 �

Z t2

t1

�
�x(t) sin �

cos �
+ (y(t)� b)cos �

cos �

��
x0(t)

cos �

cos �
+ y0(t)

sin �

cos �

�
dt

=
1

1 + tan2 �

Z t2

t1

(�x(t) tan � + y(t)� b) (x0(t) + y0(t) tan �) dt

=
1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt:

To restate what we have just proved:

Theorem 1 Let C be the smooth curve w(t) = [x(t); y(t)], where t1 � t � t2. Let R be the
region bounded by C, the line y = mx + b, and the perpendiculars to the line from (x(t1); y(t1)) to
(x(t2); y(t2)). Then the area of R is given by

1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt: (6)
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Green's Theorem in our discussion can be summarized as follows:

Theorem 2 Let C be the smooth curve w(t) = [x(t); y(t)], where t1 � t � t2. Let R be the
region bounded by C, the line y = mx + b, and the perpendiculars to the line from (x(t1); y(t1)) to
(x(t2); y(t2)). We denote the counterclockwise boundary curve of R by @R. If P and Q are scalar
�elds with continuous partial derivatives satisfying @Q

@x
� @P

@y
= 1, thenZ

@R

P dx+Qdy =

Z Z
R

�
@Q

@x
� @P
@y

�
dA (7)

=
�1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt;

Note. For convenience, we choose P (x; y) = �y
2
and Q(x; y) = x

2
:

Remark 3 Observe Theorem 1 proffers an explicit formula for �nding the area enclosed by a para-
metric closed curve. Suppose the curve C is a semicircle described by the thick curve, [cos t; sin t],
traveling from D to E, where t 2 [0; �]. The line L = !AB is y = x� 4, as shown in Figure 2.

Figure 3. Area with direction
The area of the the region R bounded by C, the line L, and the perpendiculars to the line L from D
to E is enclosed by the closed curveD ! E ! A! B ! D. This area is the area of the semicircle
plus the area of the trapezoidDEAB. Since the closed curve is traversed counterclockwise, (6) gives
us a negative value of ��

2
� 4, and therefore the area is �

2
+ 4.

For the remainder of the paper, the word "area" represents a net signed area. The area enclosed
by a counterclockwise curve is negative and the area enclosed by a clockwise curve is positive due to
the construction of c1 in (1) in section 1.2.

Remark 4 Setm = b = 0 in (6), then Z t2

t1

y(t)x0(t)dt; (8)

as expected. In addition, (7) also provides the signed area enclosed by a curve [x(t); y(t)] , a line L,
and the perpendiculars to the line L from (x(t1); y(t1)) to (x(t2); y(t2)).
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Corollary 5 Let C be a closed smooth curve traveling only in one direction, then (6) produces the
area bounded by the closed curve which is independent of the location of the line L.

Remark 6 Corollary 5 and the example in Remark 3 coincide with Green's Theorem in the sense that
the area enclosed by a closed piecewise smooth curve can be obtained by utilizing contour integrals
along the boundary curve traversed in one direction.

1.3 Examples
Using Theorem 1, we can �nd the area bounded by two parametric curves without utilizing Green's
Theorem.

Example 7 Given two curves, a cardioid C1 = [2 cos(t) � cos(2t); 2 sin(t) � sin(2t)] and a circle
C2 = [0:5 + 3 cos(t); 0:5 + 3 sin(t)], where t 2 [0; 2�].
(1) Find the area of the region that is inside the cardioid C1 and exterior to the circle C2. (See Figure
3 below.)
(2) Find the area of the region that is inside both C1 and C2.

Figure 4. Area between two parametric curves

Part (1):
Step 1. First, we �nd the intersections of these two curves at

A = (�2:108615230; 1:981595956) and B = (:2046062939;�2:485421672),

respectively.
Step 2. We calculate the area bounded by C1 and line segment AB. We integrate along C1 counter-
clockwise from A (t = 2:574088482) to B (t = 4:402664587) by applying (6) to compute the area
bounded by C1 and the line equation AB :

y = �1:931x� 2:09;
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and obtain

1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt (9)

=
1

1 + (�1:931)2
Z 4:402664587

2:574088482

((cos 2t� 2 cos t)(�1:931) + 2 sin t� sin 2t+ 2:09) �
(�2 sin t+ 2 sin 2t+ (2 cos t� 2 cos 2t)(�1:931)) dt

= �7:538433161:

Note that the answer above is negative since we integrate along a counterclockwise path.
Step 3. We next calculate the area bounded by C2 and the line segment AB. We integrate along C2
clockwise from B (t = 4:613764607) to A (t = 2:625063229) by applying (6) to compute the area
bounded by C2 and the line equation AB :

y = �1:931x� 2:09;

and obtain

1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt (10)

=
1

1 + (�1:931)2
Z 2:625063229

4:613764607

((�0:5� 3 cos t)(�1:931) + 0:5 + 3 sin t+ 2:09) �
(�3 sin t+ 3 cos t)(�1:931)) dt

= 4:836961037:

Therefore, the area bounded between C1 and C2 inside the cardioid C1 and exterior to the circle C2
is 2:701472124:

Part (2): We �rst �nd the area of the cardioid ofC1 by applying equation (8), which yields 18:84955592.
Next we subtract the answer of part 1 from the area of the cardiod C1. Our result for part (2) is
16:14808380.
The Maple worksheet for this example can be found in [7].

Remark 8 Let C�1 be the path traversed along C1 counterclockwise from A to B and C�2 be the path
traversed along C2 clockwise from B to A. Using Green's Theorem on the curve C = C�1 [ C�2 , we
obtained 2:701472124 for the area of the region enclosed by C:

1

2

Z
C�1

(x(t)y0(t)� y(t)x0(t)) dt+ 1
2

Z
C�2

(x(t)y0(t)� y(t)x0(t)) dt

= 9:955568535� 7:254096410 = 2:701472125:

Example 9 Let the curve C be an ellipse given by [A cos t; B sin t], where t 2 [0; 2�], and a line L :
y = mx + b. We obtain AB� for the area of the region inside the ellipse by applying (6), regardless
of whether the line L intersects the curve C.

Another example below shows that if a curve traverses in only one direction, we will obtain the
area enclosed by the curve by applying (6).
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Example 10 Let r(t) = sin 3t, f(t) = r(t) � cos t, g(t) = r(t) � sin t, the line L =  !DE be y =
�0:9x � 1:378. If C is the curve [f(t); g(t)], where t 2 [0; �

2
]. Find the area bounded by C with

respect to the line L:
Sketch the graph of C, line L =

 !
DE, and perpendiculars AE and BD, from A = [f(0); g(0)] and

B = [f(�
2
); g(�

2
)] to L, respectively, in Figure 5 below. Find the areas of two portions, one being the

loop going from A back to A in a counterclockwise direction and the other enclosed by ABDEA in
a clockwise direction. The area of the �rst portion isZ �

3

0

g(t)f 0(t)dt = � �
12
= �0:2617993878:

Figure 5. Area of a parametric curve with respect to a slanted line

We apply formula (6) to compute the area for the second portion

1

1 +m2

Z �
2

�
3

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt = 0:3056748917:

Therefore, the area of the region bounded by C with respect to the line L is 0:5674742795:The corre-
sponding Maple worksheet can be found in [8].

Example 11 Let r(t) = sin 3t, f(t) = r(t) � cos t, g(t) = r(t) � sin t. Furthermore, de�ne

F (t) = f(t� �
6
) and

G(t) = g(t+
�

6
):
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Find the area enclosed by [F (t); G(t)], where t 2 [0; �]. Sketch the graph of [F (t); G(t)] as follows:

Figure 6. Area of a parametric curve which travels in only one direction

By Corollary 5, we can apply (8) in Remark 4 to obtain the value �
8
. Note that since the curve travels

only in one (clockwise) direction (we leave this veri�cation to the reader), the value represents the
area enclosed by the curve. The Maple worksheet for this example can be found in [9].

2 Extending ideas from 2-D to 3-D
Suppose x (s; t), y (s; t), and z (s; t) are scalar functions, and D � R2. The set

w (s; t) = f[x (s; t) ; y (s; t) ; z(s; t)] 2 R3 : (s; t) 2 Dg

is called a parametric surface or simply a surface. The parametric surface is called smooth if the
tangent vectors in the s and t directions satisfy

ws �wt 6= (0; 0; 0) throughout its domain. (11)

For the rest of paper, we will assume a surface is orientable; i.e., it is possible to choose a unit
normal vector n at every point continuously over the surface.
We want to integrate a smooth parametric surface w(s; t) = [x(s; t); y(s; t); z(s; t)], t1 � t � t2,

s1 � s � s2, with respect to a plane P passing through the origin and spanned by vectors u and v;
i.e., P = f0+ au+ bv : a; b2 Rg.
Let B1 = fe1; e2; e3g be the standard basis for R3, and B2 = f p1

kp1k ;
p2
kp2k ;

n
knkg be another ortho-

normal basis for R3. To form B2 :
Case 1: If u?v, then we choose p1 = u, p2 = v, and n = p1 � p2:
Case 2: If u is not perpendicular to v, then p1 is the orthogonal projection of u on v, p2 = u�p1,

and n = p1 � p2 is the normal vector for the plane P .
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First we need to �nd the vector

24p(s; t)q(s; t)
r(s; t)

35 so that
[x(s; t); y(s; t); z(s; t)] = p(s; t)

p1
kp1k

+ q(s; t)
p2
kp2k

+ r(s; t)
n

knk or (12)24x(s; t)y(s; t)
z(s; t)

35 =
h
p1
kp1k

p2
kp2k

n
knk

i24p(s; t)q(s; t)
r(s; t)

35 :
Therefore, 24p(s; t)q(s; t)

r(s; t)

35 = h p1
kp1k

p2
kp2k

n
knk

i�1 24x(s; t)y(s; t)
z(s; t)

35 : (13)

The integral of the surface w(s; t) = [x(s; t); y(s; t); z(s; t)], t1 � t � t2, s1 � s � s2, with respect
to P is

A =

Z Z
r(s; t)dpdq (14)

=

Z t2

t1

Z s2

s1

r(s; t)

����� @p
@s

@p
@t

@q
@s

@q
@t

����� dsdt:
We are ready to integrate a smooth parametric surfacew(s; t) = [x(s; t); y(s; t); z(s; t)], t1 � t �

t2, s1 � s � s2, with respect to a general plane P = fd + au + bv : a; b2 Rg that does not pass
through the origin and has only one z-intercept d. In other words, P is the plane spanned by u and v,
passing through d = (0; 0; d3).

Using the same notation as we did previously, we adjust (13) by replacing w with w�

0@ 0
0
d3

1A
(by doing this, we are shifting the surface w down vertically by d3). We have24p(s; t)q(s; t)

r(s; t)

35 = h p1
kp1k

p2
kp2k

n
knk

i�1 24 x(s; t)
y(s; t)

z(s; t)� d3

35 : (15)

Therefore, the volume bounded by the parametric surface w(s; t) = [x(s; t); y(s; t); z(s; t)], t1 �
t � t2, s1 � s � s2, with respect to a general plane P = fd+ au+ bv : a; b2 Rg is

A =

Z Z
r(s; t)dpdq (16)

=

Z t2

t1

Z s2

s1

r(s; t)

����� @p
@s

@p
@t

@q
@s

@q
@t

����� dsdt:
We next verify that our 3-D formula does reduce to the corresponding one in 2-D. We consider

w(t) = [x(t); y(t); z(t)]; t1 � t � t2:
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The plane equation P = fd + au + bv : a; b2 Rg becomes a line L = fd + au :a2 Rg when
b = 0, and the slopem of this line is u2

u1
, where u = (u1; u2). Let � = tan�1(m), then

cos � =
u � e1
kuk ke1k

=
u�(1; 0)
kuk =

u1
kuk ;

sin � = cos(
�

2
� �) = u � e2

kuk ke2k =
u�(0; 1)
kuk =

u2
kuk :

In this case, we use p1 = u = (u1; u2), and n = (�u2; u1) (note that p1?n and knk =
kp1k = kuk). We �rst �nd the coordinate vector [p(t); q(t)] of [x(t); y(t)] with respect to the basis
f p1
kp1k ;

n
knkg , where

p1
kp1k is an unit direction vector of the line L = fd+ au :a2 Rg. Let d =(0; b) be

the y-intercept of the graph of L. Therefore,

�
p(t)
q(t)

�
=

h
p1
kp1k

n
knk

i�1 � x(t)
y(t)� b

�
(17)

=

"
u1
kuk

�u2
kuk

u2
kuk

u1
kuk

#�1 �
x(t)

y(t)� b

�

=

"
u1
kuk

u2
kuk

�u2
kuk

u1
kuk

# �
x(t)

y(t)� b

�
=

�
cos � sin �
� sin � cos �

� �
x(t)

y(t)� b

�
;

which coincides with (4).
In summary, the above proof leads to:

Theorem 12 Let S be the smooth parametric surface, w(s; t) = [x(s; t); y(s; t); z(s; t)]; t1 � t �
t2; s1 � s � s2. Let R be the region bounded by S, the plane P : ax + by + cz = d, and the
perpendicular projection from the surface to the plane P . Then the volume of R is given byZ Z

r(s; t)dpdq (18)

=

Z t2

t1

Z s2

s1

r(s; t)

����� @p
@s

@p
@t

@q
@s

@q
@t

����� dsdt;
where

24p(s; t)q(s; t)
r(s; t)

35 = [p1; p2; p1 � p2]�1
24 x(s; t)

y(s; t)
z(s; t)� d

c

35 , and p1 and p2 are two orthonormal vectors on
the plane P:

For the remainder of the paper, the word "volume" represents a signed volume, which depends
on the orientation of a surface. The Divergence Theorem in our discussion can be summarized as
follows:
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Theorem 13 Let
F (x; y; z) =

�
P (x; y; z) ; Q (x; y; z) ; R (x; y; z)

�
be a vector �eld de�ned on a solid region R (with divF = 1) bounded by a smooth surfacew(s; t) =
f[x(s; t); y(s; t); z(s; t))] : t1 � t � t2; s1 � s � s2g, a plane P : ax + by + cz = d, and the
perpendicular projection from the surface to the plane P . Let S be the boundary surface of R and n
be the outward-pointing unit normal vector at each point of S. If the components ofF have continuous
�rst order partial derivatives on an open region that contains R, thenZZ

S

F � dS =

ZZZ
R

divF dV (19)

= the absolute value of
Z t2

t1

Z s2

s1

r(s; t)

����� @p
@s

@p
@t

@q
@s

@q
@t

����� dsdt;
where dS = n dS,

24p(s; t)q(s; t)
r(s; t)

35 = [p1; p2; p1 � p2]�1
24 x(s; t)

y(s; t)
z(s; t)� d

c

35, divF = @P

@x
+
@Q

@y
+
@R

@z
, and p1

and p2 are two orthonormal vectors on the plane P:

Remark 14 Choose the plane to be the xy-plane (i.e., z = 0) and use the standard basis fe1; e2; e3g
for R3. Then (19) reduces to Z Z

z(s; t)dxdy (20)

=

Z t2

t1

Z s2

s1

z(s; t)

����� @x
@s

@x
@t

@y
@s

@y
@t

����� dsdt;
as expected.

Corollary 15 If the smooth surfacew(s; t) is an orientable closed surface, (19) produces the volume
of the region bounded by the closed surface, and this volume is independent of the location of the
plane P .

Remark 16 This is a simple application of the Divergence Theorem.

The next two examples demonstrate the use of Theorem 13 and Corollary 15.

Example 17 Let S be the ellipsoid

24x(s; t)y(s; t)
z(s; t)

35 =
24 3 + sin t � cos s2 + 2 sin t � sin s

3 + 3 cos t

35, where s 2 [0; 2�], and t 2
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[0; �], and P be the plane 2x+ y + z = 0 (passing through the origin). See Figure 6 below.

Figure 7. Volume of a surface

Then (18) produces the volume of the ellipsoid regardless of the location of the plane P . This is a
direct observation from the Divergence Theorem. (See Maple worksheet in [10]).

Example 18 Let S be the ellipsoid represented by the following parametric equation24 cos(4) � sin(t) � cos(s)� 3 sin(4) � cos(t)
sin(2) � sin(4) � sin(t) � cos(s) + 2 cos(2) � sin(t) � sin(s) + 3 sin(2) � cos(4) � cos(t)
cos(2) � sin(4) � sin(t) � cos(s)� 2 sin(2) � sin(t) � sin(s) + 3 cos(2) � cos(4) � cos(t)

35 ;
where s 2 [�; 2�], and t 2 [0; �

2
], and P be the plane x+ y + z = �3. See the graph below.

Figure 8. Volume of a surface with respect to a slanted plane
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Let R be the region bounded by S, the plane P , and the perpendicular projection from the surface to
the plane P . Then the signed volume of R is�2�+ 26

9
when Theorem 12 or 13 is applied. (See Maple

worksheet 11.)

3 Another Rotation and Shifting Method
It may not be trivial to �nd the intersection between a smooth surface and a plane. Consequently, it
is dif�cult to �nd the volume of the solid bounded by the surface and the plane. In this section, we
describe how we use the idea of rotation to aid us in �nding the volume of the solid bounded by a
closed orientable smooth surface S of the form F (x; y; z) = 0 and a plane P1 : ax + by + cz = d.
Throughout this section, we assume the plane P1 cuts the solid bounded by the surface S into only
two pieces. Our goal is to �nd the volumes of these two respective pieces bounded by P1 and S. The
procedure is as follows:
Step 1. We �rst consider the plane P2 : ax+ by + cz = 0, which is parallel to P1 and passes through
the origin.
Step 2. We pick three points X0, X1, and X2 on P2, and form the orthonormal basis fp1; p2; ng,
where n is the unit normal vector of P2 (or P1) that points toward the the region whose volume we
seek.

Step 3. We now consider the plane P1 : ax + by + cz = d. By Theorem 12, we have X �

24 00
d
c

35 =
AX�, where X =

24 xy
z

35, A = [p1; p2; n], and X� =

24 p
q
w

35. In other words, we express X in terms
of X�:

Step 4. We substitute X with A

24 p
q
w

35+
24 0

0
d=c

35 into the formula F (x; y; z) = 0, which results in
an equation G(p; q; w) = 0:
Step 5. Employing spherical coordinates we solve the equationG(p; q; w) = G(� sin t cos s; � sin t sin s; � cos t)
= 0 for �:
Step 6. We use the following formula to �nd the volume of the region bounded by P1 and F (x; y; z) =
0 : Z 2�

0

Z �
2

0

 Z �(s;t)

0

�
�2 sin t

�
d�

!
dtds: (21)

Note: Maple allows us to solve for � above. If the exact integration value from (21) is not possible
when using a CAS, we apply higher dimension Simpson's rule to obtain an approximation. We
summarize the discussion above into the following:

Theorem 19 Let S be the smooth parametric surface of the form F (x; y; z) = 0 (or we write
F (X) = 0 for simplicity). Let R be the region bounded by S and the plane P : ax + by + cz = d.
Furthermore, we assume the following conditions are met:
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(i) If G(p; q; w) = F

0@A
24 p
q
w

35+
24 0

0
d=c

351A = 0, where A = [p1; p2; n] and p1; p2 are two perpen-

dicular unit vectors on the plane P , and n is the unit normal vector of P that points toward the the
region whose volume we seek.
:
(ii) If G(� sin t cos s; � sin t sin s; � cos t) = 0 is solvable for �,
then the volume of R is given byZ 2�

0

Z �
2

0

 Z �(s;t)

0

�
�2 sin t

�
d�

!
dtds: (22)

3.1 An Example
Example 20 Given the surface S : 4x2 + 4y2 + 4z2 + 4xy + 4xz + 4yz � 5 = 0 and the plane P :
x + y + z � 1 = 0, �nd the respective volumes bounded by the ellipsoid and the plane. The graph is
shown below.

Figure 9. Volume bounded by a surface and a slanted plane
Step 1. We pick three points X0 = (0; 0; 0), X1 = (1;�1; 0), and X2 = (1; 0;�1) on the plane
P2 : x+ y+ z = 0 to form the vectors u = X1�X0 and v = X2�X0. We form orthonormal vectors

p1 =

24
p
2
2

0
�
p
2

2

35 ; p2 =
264 �

p
6

6p
6
3

�
p
6

6

375 ; and n = p1 � p2 =
264

p
12
6p
12
6p
12
6

375 : (23)

Step 2. We compute X = AX�, where X =

24 xy
z

35, A = [p1; p2; n], and X� =

24 p
q
w

35 :
Step 3. We substituteX with A

24 p
q
w

35+
24 00
1

35 into the formula F (x; y; z) = 0, or 4x2+4y2+4z2+
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4xy + 4xz + 4yz � 5 = 0, to get an equation G(p; q; w) = 0.
Step 4. Solve G(� sin t cos s; � sin t sin s; � cos t) = 0 for �, for which we obtained two values from
Maple:
Case 1. If we use the following (see Maple worksheet, Section3-Example20.mws)

� = 1=6 � (�8 � 3^(1=2) � cos(t) + 3 � 2^(1=2) � sin(t) � cos(s) + 3^(1=2) � 2^(1=2) � sin(t) � sin(s) +
2 � (60 � cos(t)^2� 12 � sin(t) � cos(s) � 3^(1=2) � 2^(1=2) � cos(t)
�12 � sin(t) � sin(s) � 2^(1=2) � cos(t)
+3 � cos(s)^2� 3 � cos(s)^2 � cos(t)^2 + 3 � cos(s) � 3^(1=2) � sin(s)�
3 � cos(s) � 3^(1=2) � sin(s) � cos(t)^2 + 6)^(1=2))=(1 + 3 � cos(t)^2); (24)

the volume of one portion of the region bounded by P1 and F (x; y; z) = 0 isZ 2�

0

Z �
2

0

 Z �(s;t)

0

�
�2 sin t

�
d�

!
dtds = :4110463566;

when we use 200 points Simpson's Rule for approximation.
Case 2. If we use the following

� = 1=6 � (�8 � 3^(1=2) � cos(t) + 3 � 2^(1=2) � sin(t) � cos(s) + 3^(1=2) � 2^(1=2) � sin(t) � sin(s)
�(246 � cos(t)^2� 48 � sin(t) � cos(s) � 3^(1=2) � 2^(1=2) � cos(t)
�48 � sin(t) � sin(s) � 2^(1=2) � cos(t)
+18 � sin(t)^2 � cos(s)^2 + 12 � sin(t)^2 � cos(s) � 3^(1=2) � sin(s) + 6 � sin(t)^2 � sin(s)^2
+18)^(1=2))=(1 + 3 � cos(t)^2); (25)

the volume of the other portion of the region bounded by P1 and F (x; y; z) = 0 isZ 2�

0

Z �
2

0

 Z �(s;t)

0

�
�2 sin t

�
d�

!
dtds = �7:867777159 (26)

when we use 200 points Simpson's Rule for approximation. Note that the total volume, by taking
the absolute value, is about 8:278823557, which is accurate up to 8 decimal places. (See Maple
worksheet [12].) It can be shown that the ellipsoid can be rotated to the form of

x2

5=2
+
y2

5=2
+
z2

5=8
= 1;

which has a volume of 8:278823556.

An Exercise. We are given the surface S : x2 + y2

4
+ z2

9
= 1 and the plane P : x + y + z =

p
3.

Find the respective volumes bounded by the ellipsoid and the plane.
Answer: we get two values, 4:463982383 and�20:66875886, when we use n = 200 in Simpson's

rule. (SeeMaple worksheet [13].) Readers can verify that the sum of the absolute values adds up to the
volume of an ellipsoid by using the formula 4

3
�abc, when the ellipsoid is written as x2

a2
+ y2

b2
+ z2

c2
= 1.

Remark 21 We note that the rotation method described here applies to the smooth surface satisfying
F (x; y; z) = 0 and the method is valid only when � is solvable by a CAS.
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4 Conclusion
In an ordinary calculus textbook, the Divergence Theorem and Green's Theorem are usually taught in
the last semester of a calculus sequence, to a group of students who completed some basic training in
calculus. These theorems are important and yet dif�cult for many students. In this paper, we describe
special ways of �nding net signed areas and volumes through smooth parametric curves and surfaces.
The methods discussed in Sections 2 and 3 provide us with a way to �nd the net signed volume.

The methods described here are accessible to those students who have knowledge in 2-D and 3-D
Riemann integration. In particular, formulae (7) and (19) are natural extensions when we replace the
graphs represented by y = f(x) and z = f(x; y) by a parametric curve or surface with respect to a
line y = mx+ b or a plane ax+ by + cz = d, respectively. Consequently, the contents are accessible
to a wider audience and can be used to prepare students for the study of the Divergence Theorem,
Green's Theorem, and even Gauss-Bonnet Theorem in Differential Geometry.
Note that the results obtained in this paper are not possible without the help of technology. Dy-

namic Geometry collects the data, estimates the area, and allows us to construct the animation. The
CAS aids us in the computation, graphing, and veri�cation of conjectures. Authors anticipate that
mathematical content will evolve as technological tools advance.
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